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1. INTRODUCTION

The method of moments (MOM) applied to volume

integral equations has been a common way of solving

for the electromagnetic scattering from highly

inhomogeneous bodies. Many researchers [1] have

experienced difficulties in obtaining an accurate

solution for bodies with a high relative permittivity.

With a revised treatment for the singular dyadic

Green's function [2] in the integrand of the volume

integral equation, we hope to overcome these

difficulties and obtain a benchmark solution for a

three-dimensional multi-wavelength scatterer with

edges and corners.

Richmond [3],[41, and Livesay and Chen [5] appear

to be the first to use the volume integral equation

for dielectric bodies. Their procedure is based

on volume discretizations of the volume integral

equation with pulse basis functions and point

matching. However, for 3-D problems as well as

for the 2-D problems of TE polarization, substantial

inaccuracies are observed. Recently, Joachimowicz

and Pichot [61 compared the different integral

formulations for 2-D TE scattering problems and

analysed the source of these errors. They

introduced a new integral Pcuation that in'luded



surface integrals to take account of surface charges

at discontinuities. Even though better performance

was obtained, considerable errors can still be

observed.

In this report we are trying to accomplish two

goals: (1) to eliminate the source of errors and

(2) to obtain a benchmark solution to permit

comparisons with the theoretically exact series

solution for 2-D scattering from dielectric cylinders;

and if successful, to obtain a benchmark solution for

the 3-D scattering from a dielectric cube. Initial

progress towards these goals are described.

At first, we believed the inaccuracies of the

solution of the past researchers were probably due

to inaccuracies in computing the highly singular

dyadic Green's function for the scattering from

dielectric cylinder, and in particular, in their

treatment of the self term. In both Richmond and

Chen's papers [3]-[5], the kernel of the integral

equation is calculated by replacing the square

self cell by a circular disk having the same area

or replacing the volume self cell by a sphere

having the same volume. Thus, our first step was

to perform the self cell integration as accurately

as possible. For the case of scattering from a
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dielectric square cylinder, our results indicated

that there is less than 1% difference between

Richmond using the equal area approximation and our

more accurate revised approach. Thus, there appears

no great advantage in using a more accurate

self cell evaluation in computing the bistatic

scattering from the dielectric square cylinders.

In the original pulse basis and point matching

method, the electric field and the dielectric

properties are assumed to be constant in each cell

and the Green's function is evaluated at the center

of each cell. In other words, there is one center

point for each nonself cell calculation. In our

second approach, we increased the number of

integration points of the Green's function for

each of these cells and checked for convergence.

For TM polarization, our results converged rapidly,

and there is less than 2% difference between

computing each cell contribution of the Green's

function with one center point and with 240

integration points. However, our results

converged more slowly for the TE case, the

difference between computing with one center point,

25 points and 100 points, as compared with 240

points, was 5%,2% and 1% respectively. Again
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the increase in accuracy was not very large.

Our next approach involved performing the

integration over both the self and nonself cells

by changing the area integrals to line integrals.

Making use of Gaussian Legendre quadrature

integration techniques, we can significantly

decrease the total number of integration points

from the number we used for the area integration

and achieve higher accuracy. Our results suggest

that the line integration method proved to be most

accurate method for evaluating the Green's function

over each cell. The area integration method

required more than 200 integration points to achieve

the same accuracy as 80 integration points with the

line integration method.

One of the criteria for the pulse basis functions

to work is to have cells much smaller than a

wavelength. Since there is no exact series solution

for the square cylinder, the circular cylinder was

used for determining the required cell size. The

analytical series solution for scattering from the

circular cylinder can be easily derived and coded

numerically. We first check the validity of

analytical formulation of the circular cylinder and

accuracy by comparing it with the results which can
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be found in many electromagnetic textbooks [7] and

(8]. The internal E and R fields for both TM and

TE cases were computed and inspected to detect any

unusual rapid changes in the fields. With the help

of our exact code for scattering from the circular

cylinders, the results with different cell sizes

in the integral equations can be compared. The

numerical results indicate that a minimal cell

size of x/10 (where x is the wavelength in

the dielectric material) in the TM case, gives

approximately 2% of error in the far-field

scattering from a long circular cylinder of

radius = 0.3 x and permittivity equal to 3.

Similar accuracy is observed in the TE case for

low values of permittivity.

As mentioned above, three different approaches

have been used to evaluate the Green's function

over each cell - center point, area integration,

and line integration, for the scattering from

dielectric cylinders. There is practically no

distinction between the three methods in computing

scattering from the dielectric cylinders in the

case of TM polarization. The results are in good

agreement with the exact solution to less than

5% maximum error. However, this is not the case
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for TE polarization, when the permittivity is large

or when the size of the circular cylinder is large.

Even though the cell size decreases, better agreement

is needed between the numerical data and exact

solution. The curves tend to converge very slowly

to the exact curve.

One explanation of the deficiency may be due to

the square cell representation of the circular

cylinder. The jagged edges may produce an error.

Tables 1 and 2 show the comparsion between

different cells size for the scattering from a

dielectric circular and square cylinder for Er - 3,

radius = 0.3 x (koa - 1.88), for TM and TE

polarization respectively. Observed that, unlike

the square cylinder case, the results for the

circular cylinder oscillate about the exact

solution as the cell size decreases or the number

of cells per dielectric wavelength increases.

However, the oscillations are quite small. This

suggests that the jagged edges cause minor

oscillations, and are not the main source of the

error. We tried to verify this by computing

the RCS versus k0 a of the square and circular

cylinders with large permittivity (er = 10),

where kois the free space wave number, and 'a' is

6



Circular Cylinder Square Cylinder

Er- 3, k0 a - 1.C8 cr- 3, k0 a - 1.88

N x RCS 0 RCS 180 RCS, 0 RCS 180
(dB) (dB) (dB) (dB)

5 10 0.39695 10-19377 -2.16554 11.36273
6 12 0.48410 9.94038 -2.21087 11.37733
7 13 0.29716 10 38816 -2.23595 11.38627
8 15 0.32672 1 .34977 -2.25133 11.39211
9 17 0.41695 10.16945 -2.26145 11.39614

10 19 0.44676 10.07070 -2.26848 11.39903
11 21 0.43276 10.09018 -2.27357 11.40117
12 23 0.48777 9.97323 -2.27737 11.4028n
13 25 0.38840 10.21299 -2.28030 11.40406
14 27 0.44939 10.10223 -2.28259 11.40507
15 29 0.41067 10.15351 -2.28443 11.40588

Exact Soln. 0.48661 10.02144

Table 1. Comparison between Bistatic scattering of Circular
and Square dielectric Cylinders, TM polarization
using different size of square cells.

A x dielectric wavelength

t, size of square cell
N number of segments per radius.



Circular Cylinder Square Cylinder

cr- 3, koa - 1.88 Er- 3, koa - 1.88

N x * RCS 0 RCS 180 RCS 0 RCS 180(dB) (dB) (dB) (dB)

5 10 -11.24765 8.97380 -11.40775 10.93251
6 12 -11.03964 8.71287 -11.37207 10.92116
7 13 -12.36419 8.93033 -11.33195 10.91392
8 15 -13.65737 9.12377 -11.29794 10.90898
9 17 -12.52884 8.86450 -11.27067 10.90544

10 19 -12.61856 8.86981 -11.24895 10.90280
11 21 -13.06285 8.90101 -11.23151 10.90077
12 23 -12.26397 8.71944 -11.21733 10.89916
13 25 -13.66110 8.97206 -11.20564 10.89785
14 27 -12.82131 8.97206 -11.19589 10.89678
15 29 -13.62015 8.93140 -11.19541 10.89599

Exact Soln. -13.60743 8.85784

Table 2. Comparison between Bistatic scattering of Circular
and Square dielectric Cylinders, TE polarization
using different sizc of square cells.

* x dielectric wavelength
A size of square cell
N number of segments per radius.



the radius of the circular cylinder or half-side

length of the square cyli,.der. The curves for

different cell sizes agree quite closely up to a

cylinder size of k0 a equal to about 1.5 for ooth

the square and circular cylinder (see Fig. 70).

Especially notice that the scattering curves of

the dielectric square cylinder strongly separate

as koa increases beyond 3.0. This result again

indicates that the jagged edge in the circular

cylinder case is not the main source of the error.

Despite our improved computational accuracy, the

method of moments with pulse basis functions and

point matching for bistatic TE scattering from large

cylinders with large permittivities did not give

accurate results. Some authors have suggested that

the volume integral equation solved with pulse basis

functions produces a false surface charge density

[i]. Using pulse basis functions to represent the

unknown polarization introduces fictitious charge

layers at every cell boundary. Nevertheless, some

researchers have been successful in obtaining

accurate results with more sophisicated techniques,

such as linear basis functions with polygonal cells

(9], polyhedral cells [10], rooftops basis

functions with triangular cells 1ii1, square cells

9



[12], and tetrahedral cells [131. Still, a serious

drawback of these methods is the large number

of unknowns required per cell.

Since the existing volume integral equation

solved with pulse basis functions does not deal

adequately with surface charge density in the TE

polarization case, we are presently revising the

formulation of the volume integral equation to

retain pulse basis functions and yet avoid the

fictitious charge density problem.
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2. EXACT SOLUTION FOR THE CIRCULAR DIELECTRIC CYLINDER

Our first task is to generate a general computer

code for the exact solution of bistatic scattering

from a lossless dielectric circular cylinder (Fig. 1)

The results of this code are then compared to the

exact solutions found in many electromagnetics

scattering books and papers. We select Ruck's

Radar Cross Section Handbook [7] and Barber's

Light Scattering by Particles book [8] as our

reference for their more comprehensive examples.

With our exact code developed, the internal fields

can also be obtained. This is done to see if there is

any abnormality or large variation in magnitude and

phase in the internal fields that requires special

attention or treatment.

The exact solution is then compared to the MOM

solutions using the center point, area and line integral

approaches for evaluating the Green's function over

the self cells to evaluate the bistatic scattering

from an infinite circular lossless dielectric cylinder.

Finally, we will apply the MOM codes to infinitely

long square lossless dielectric cylinders.

11
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Fig. 1 Scattering from a dielectric cylinder
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2.1 Brief Derivation of Exact Formula

2.1.1 TM Case

inc ikx
LetE - ze (1)

E - z E 5'•< (2)

1 lz

E -E + > f>a (3)
2 scat inc

From Maxwell's equation

V X E = iwYH (4)

i aE
H = z

wy By (5)

1 3E
HY - Z-

isYwy ?s' (6)

Using boundary conditions for f and Rt at - a
tan tan

E - E (7)
1z 2z

H - H (8)
1p 2p

13



and letting

Ekina

lz n n 1 (9)

(1) ino
E t { t Hn(k ) + J (k 5 )}e 5 > a

2z n n o ,-•f- n o (10)

ik 1, '1 inp
H - a J (k ) e a

i n 1
w fl:.ov (Ii)

ik. 0 (1) 00 inp
H - Z{ t H' (k ' )+ L.J'(k l )}e y > a

20 n -so n n o - n o
w• (12)

0

we find

(1) (1)

k J (k. )H' (kof) - H (koy)J'(koy))
o n , n n n

a
n

(1) (1)
k J (k y)H' (k S) - k H (k f)J'(k f)

o n 1 n o 1 n o n 1

(13)

k J (kj )J' (k l) - k J (k 5 )J'(k y)
1 nd n 1 o n 1 n o

t
n

(1) (1)

k J (kl?)H' (k 7) - k H (k y)J'(k •)
0 n n o in o n 1

(14)
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2.1.2 TE Case

inc ^ ikx
Let H - z e (1)

H - z H • •a (2)

1 lz

H mH + H >a(3)

2 scat inc

From Maxwell's equation

V X H -iweE (4)

1 ýH
E - z

i (5)

i ?H
E9 - z

we (6)

Using boundary conditions for t and ta at - a
tan tan

H - H (7)
lz 2z

E - E (8)
10 21

15



and letting

00 ino
H T b J(ky) e <a

iz nn 1 (9)'-V -o•

0 ()o ino
H = { sH (ko) + J (kO)ye a (102z n,- n.. o 0( 0 )

k, inp
E b J'(k) e a

10 n n 1
iwe (1i)

k() 00 iný

E 2 { s H' (k ) + ZJ'(kofye a
iwe 

( 12)
0

we find
ko (1) (1)

- [ J (k )H' (k •) - H (k o )J'(k f)j
bo n o n 0 n o n o

b
n

k, (1) ki (1)
- J (k 5)H' (k H (k o)i
e n 1 n 0 n 0 1
0 1

(13)

k1  k
- J (k )J' (k ) - - J (k )J' (k
e, n 0 n 1, n n 0

s
n

k, (1) k, (1)
- J (k ý)H' (k f) - - H (k f)J'(k y)
co n 1 n 0 fi n o n 1

0 1

(14)
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3. RESULTS FROM THE EXACT CODE

The results for the far field scattering

obtained from the exact solution in Section 2.1

of the dielectric lossless circular cylinder are

compared to the exact solutions from Ruck's Radar

cross section Handbook (7], (Figs. 2-3) and

Barber's Computational Methods (8] (Figs. 4-10).

Figs. 2-3 show the normalized scattering cross

section of a circular cylinder with er - 2.56,

pr = 1.0 with varying koa for vertical polarization

(TM) and perpendicular polarization (TE)

respectively. Figs. 2a and 3a are the exact

solutions from Ruck's book. Figs. 2b and 3b are

from our simulation. The good agreement confirms

our numerical code for the exact solution.

Figs. 4-5 show the angular scattered intensity

for a circular cylinder with size parameter of 50

and an index of refraction of 1.5 for TM and TE

polarization. The plotting increment is 0.2 degree.

The solutions from Barber's book are shown in

Figs. 4a and 5a respectively. Agreement with

Barber's solution is good.

Figs. 6-7 show the internal intensity along the

17
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InLernal Inton tILW of on in(IniL| l| long

circulor cylindlr,kj o 20 or -2.25 TM.

8.8

t.

a 4.8

2.A

f\j a)

-1 .8 -0.5 0.8 8.5 1.8

r/o

10 - T I I I I T , I

""TM

-3 4

I b)

-1.0 -0.6 -0.0 0.6 1.0
r/a

Fig. 2.28 The i-tcrnaL intensity ulong the a axis Li. a (unction of -/, for a (.:rculLr

cyLinder with a sise pa.ur:maeter of 20 and ari indc.x of rcraction of 1.5 for TN-I ; nia]r-

isation. TI.e incident wave propagates from Ieft to right. The caIcuIation used- 400

points. Sanmple numerical results arc 0.6810 and 7.569 at r/o=-l and + 1, rcipectively.

Fig. 6
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x-axis as a function of r/a for a circular cylinder

with a size parameter of 20 and an index of

refraction 1.5 for TM and TE polarization. The

incident wave propagates from left to right. The

calculation used 400 points. The exact computed

solutions (Figs. 6a-7a) are in excellent agreement

with the reference solutions (Figs. 6b-7b).

Figs. 8-10 show the scattering intensity at 0,

90 and 180 degrees as a function of size parameter

for a circular cylinder with an index refraction

of 1.5 for TM polarization. The calculations used

1001 points. Figs. 8a-10a are the computed

solutions. The agreement with the reference

solutions (Fig. 8b-10b) are excellent.

We can thus conclude that our exact solution

code for the scattering from a long circular

cylinder is working reliably.
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InLtrnol IntenaltU of on InflntaeIV long

circvlor cVlInde,,k' o 28 oa -2.25 TE.
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Fig. 2.30 The intcrna- intensity -Jong the z axis Ls a function of ,/a for % circular
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points. Sample numerical results are I SS 0and 3.131 at 1/4=-I and +1, respectively

Fig. 7
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Scaotering InLeý5ILy for cir. cyfInder

at. degree, m -1.5, TM polarlzation.
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Fig. 2.12 Scattered intensity at 0 & az function of size parameter for a circulaur cyUndcr

with an index of refr.ction of 1.5 for TM pol..urization. The ca.lcu.lation u,•d 1001

points. Sample numerical results are 328.1. 512.S, and 222.3 at size p.,aramcters of IS,

17.5, and 20, respectively.

Fig. 8

24



Scattering Intensity for cir. cylinder

at 98 degrees, m -1.5, TM polorizotion.
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of is, 17.S, and 20, rcespectiveiy.

Fig. 9
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ScoLtering IntentanLtL ror cir. cyhjlnda

at 180 degrees, m -1.S, TM polarization.
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Fig. 2.14 Scattered intensity at 180* L a function of size praLMreter for a circulLr
cylinder with an index of refraction of 1.6 for TM polarisation. The calculation used
1001 points. Sample numerica- results Lie 2,725, 0.3091, and 2.519 at Slze pLrameter.
of 15, 17.5. and 20, respectively.

Fig. 10
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4. INTERNAL FIELDS

The Internal fields of the dielectric circular

cylinder can be computed using the equations of

Section 2.1 for both the TM and TE cases.

The magnitudes of the E fields across the

diameter with various relative permittivities of

an infinitely long circular dielectric cylinder

are shown in Figs. (l1-15)a and the phases in

Figs.(11-15)b. The H fields cases (TE polarization)

are shown in Figs. 16-20.

Fig. 11 shows the normalized internal E field

(TM case) versus distance (r/%) across the diameter

of the cylinder with size parameter koa = 5

and relative permittivity of 2.56. The calculation

used 400 points in r/x. The normalized

internal field is defined as IEI/lEmaxi or

jHI/IHmaxI.

Figs. 12-15 show the normalized internal E field

versus distance (r/x) across the cylinder (koa -5)

with relative permittivities = 4,10,20 and 50,

respectively. Similarly, the H fields from TE

polarization are shown in Figs. 16-20.

Figs. 21-30 show the normalized internal field
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with various angles (0,45,90,135,180 degrees) and

relative permittivities (2.56,4,10,20,50) as a

function of distance across the radius of the

cylinder for both polarizations. It can be seen

that the internal field at 0 degrees when combined

with the internal field at 180 degrees give the

internal field across the dielctric circular

cylinder (see Figs. 11-20).

The purpose of finding the internal fields of

the dielectric lossless cylinder with different

scattering angles and various permittivities is to

see if the internal field varies unexpectedly

rapidly near the surface of the large dielectric

lossless cylinders. If this were the case, special

treatment near the discontinuity or along the edges

of the cylinder would be necessary, that is, more

cell divisions would be required in our numerical

solution. A standing wave pattern can be observed

from the figures. Nevertheless, there is no

sudden jump nor localization of the internal field

near the rim of the large dielectric lossless

cylinder. Our results indicate that even though

the relative permittivity is large (er=50), the

size of the cylinder is still small (koa=5) enough

that the internal fields did not accumulate near
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the surface. (However, for large cylinders

(koa = 45), the internal fields do localize near

the surface [8].) Furthermore, the total number of

variations of the internal fields across the

cylinder is consistent with the value of the

relative permittivity. Since there is no

abnormality in the internal fields for the cylinder

size and dielectric constants we considered, no

special treatment was needed in the numerical

solution to take this into account.
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5. COMPARISON BETWEEN EXACT SOLUTIONS AND THE MOM
NUMERICAL SOLUTIONS USING THE AREA AND LINE
INTEGRATION METHODS

The derivation of the area integration method

can be found in Marian Silberstein's report,

Electromagnetic Scattering from Dielectrics - A

Two-Dimensional Integral Equation Solution (14].

This approach uses the method of moments (MOM)

with pulse basis functions and point matching

to discretize the integral equation into a

linear system of equations which is then solved by

matrix inversion. That is, the electric field was

represented by a constant function within each cell

and the equation was enforced at the cell centers.

To ensure good accuracy, the size of each cell must

be small compared to the dielectric wavelength,

(i.e., the number of cells n per dielectric

wavelength x, should be > 10). For the circular

cylinder, the results are compared to the exact

series solution and are shown in Figs. 31-40.

Figs. 31-37 show the normalized bistatic TE

scattering from a long circular dielectric cylinder

with different relative permittivities and values

of koa. The number of cells per dielectric

wavelength is set to 10 and the center point

integration method is used. Excellent agreement
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is observed with the exact series solution when

the relative permittivity or size of the cylinder

is small (see Figs. 31-33 and Figs. 35-37).

Figs. 34 shows the TE bistatic scattering from

a circular cylinder versus scattering angles for

k0a = 0.7 and a large relative permittivity of

9.5. As seen from the figure, the MOM solution

tends to deviate from the exact solution for

large relative permittivity.

For TM polarization, the normalized bistatic

scattering from a long dielectric circular cylinder

is shown in the Figs. 38-40. Fig. 38 shows the

normalized bistatic scattering cross section from

a long circular dielectric cylinder with er - 2.56

and k a = 0.7. Figs. 39-40 show tnat even with

large relative permictivities, the agreement

between the computed solution and the reference

solution is good.

The following figures show the comparison

between the exact solution and the integral

equation solution using the center point

integration method for a circular cylinder with

varying k0 a. Relative permittivities of 2.56,4,

and 10 are chosen. Both TM and TE polarization
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are considered. We used three different methods of

approximation for evaluating the self cell terms

to compare their efficiency. First, the self

cell term is approximated by using a constant

area with one centet point. For case 2, the

number of integration points are increased to 25

points using the same approximation method.

Thirdly, the self cell term is evaluated by using

the line integral method with 80 points.

Figs. 41-43 show the forward scattering from

a circular cylinder versus koa for relative

permittivity = 2.56,4 and 10, respectively, for

the TM polarization, the solid curve represents the

exact solutions. The exact solution uses 1200 koa

points. In our numerical computations, the number of

cells per dielectric wavelength is set to 10. Due

to limitations of computer time, only 120 koa

points are used in our numerical evaluation.

Figs. 44-46 show the back scattering. Good

agreement is obtained between the three different

numerical methods and the exact solution. However,

for er=10, better agreement can be attained if more

k0 a points ( N > 120) and the number of cells (n/x)

per dielectric wavelength are increased in the

computation.
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Figs. 47-50 show the forward and back scattering

from the dielectric circular cylinder versus koa

with relative permittivities of 2.56 and 4

respectively for TE polarization. Good agreement

exists between the different methods (120 koa

points) and the exact series solution (1200 koa

points). These is no significant distinction

between the exact solution and the three methods

when the relative permittivity is small.

However, as the permittivity is increased, the

computed solution deviates from the exact solution.

This is especially true for the TE case when the

relative permittivity is increased to 10. Shown

in Fig. 51 is the forward scattering from a long

lossless circular cylinder versus koa with two

different methods, the single center point area

integral and the line integral method. The number

of segments per dielectric wavelength is set to

15. The curves begin to deviate from the exact

solution (the solid curve) when koa > 0.5.

Fig. 52 shows the back scattering . Even though,

the two numerical methods produce curves that

differ somewhat, the line integral method for

evaluating the self cell terms deviates less than

the center point area integral method. It is noted
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that a sharp drop occurs at ka = 1.95 in the solution

with center point area integral method that is not

found in the exact solution or with the line integral.

Figs. 53-54 shows a slight improvement when the

number of cells per dielectric wavelength is

increased. However, the curves seem to converge

more slowly. The closest match is the curve where

the number of cells per dielectric wavelength is

set to 18. The greatest mismatch is found when it

is set to 10. Due to the limitation of computer

time and storage, the maximum size koa of the

cylinder is set to 1.8 for n/x =18. This gave an

1800 x 1800 matrix.

From Figs. 53 and 54, we select three points to

observe the scattering from the dielectric circular

cylinder versus scattering angles. The three points

are k 0a = 0.5 (good agreement with exact solution),

1.5 (slight disagreement with exact solution) and

1.7 (poor agreement with exact solution). Figs.

55-57 show the normalized scattering from a lossless

dielectric circular cylinder when er -10, and

koa = 0.5,1.5, 1.7 respectively. The number of

segments per dielectric wavelength is set to 10.

As seen from figures, the curves of scattering

versus angle confirm the agreement at the single
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points. That is, Fig. 55 shows a close match to

the exact solution, and Fig. 56 shows a slight

mismatch from the exact solution, and Fig. 57 shows

a complete mismatch.

The next set of figures (Figs. 58-62) represent

the forward scattering from a long square dielectric

lossless cylinder, with relative permittivities of

2.56,4,and 10 for TM polarization, and 2.56 and 4

for TE polarization. The number of cells per

dielectric wavelength is set to 10 to ensure more

accuracy. As before, three methods of integrating

the Green's function over the cells are used. The

back scattering is shown in Figs. 63-67. As seen

from the figures, there is no significant difference

between the results of the three methods.

Figs. 68-69 show the TE forward and back

scattering from a dielectric square cylinder

with relative permittivity of 10 for the three

different methods. The number of cells per

dielectric wavelength is set to 10. The total

number of k~a points used is 100. As seen from

these curves, the three methods give results that

vary slightly from each other. The solid curve

represents the line integral approximation of the

cells, the single dotted line curve represents the
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Back Scattering for a long circular

cylinder, cr - 16.0, n/ý - 10,15,I8, TE
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area integral method with one center point. As more

points are added to the area integration over the

cells (e.g., 25 points in our case), the curve tends

to converge to the solid curve represented by the

line integral method which has 80 points.

Fig. 70 shows the back scattering from a circular

cylinder and a square cylinder using three different

cell sizes for TE polarization with er = 10. It can

be seen that decreasing the cell size tends to

produce convergence to the exact solution (solid

curve) for the circular cylinder. However, the

curves converges very slowly. For the square

cylinder, notice that at k0 a - 3.0 the curves for

two different cell sizes seem to diverge even though

the square boundary matches perfectly, and there

is no jagged edges as in the case of the circular

cylinder. This confirms that the jagged edges of

the circular cylinder are not a large source of

error.
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6. CONCLUSION

The special treatment of the self cells in the

volume integral equation did improve the performance

of the solution for scattering from dielectric

bodies. However, the improvement was slight and

limited to small scatCerinr bodies. When the

relative permittivity i 7et equal to 10, the total

number of cells needed fur TE polarization is

already in the range of 1800 for ka-l.8. Thus

the size of the scatterer we can haidle on our

mainframe computer is limited. Moreover, the curves

from Figs. 68-69 require at least 120 ka points.

It is very time consuming to run the simulation

program 120 times to get the required curve.

One source of the inaccuracies of the so'ution

is the square-cell approximation of the cross

section of the circular cylinder. However, our

computations indicated that this jagged edges

problem is not a major source of erior.

The most important reason for the inaccuracies,

as pointed out by Peterson [1], is in the pulse-

basis, point-matching formulation. Using the

pulse basis functions introduces fictitious charge

layers at every cell boundary with resulting

92



numerical error. This error tends to increase as

the relative permittivity increases. However, with

a new formulation of the volume integral equation

which deals with the surface charge density, we hope

to overcome these inaccuracies and obtain a benchmark

solution for multi-wavelength dielectric scatterers

using convenient pulse basis functions. Finally,

making use of the symmetry of the matrices and

converting to Toeplitz or tridiagonal matrices will

ensure faster computing time and less storage

requirements.
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